10. 参考文献#
- 1
寺西 信一. 画像入力とカメラ. オーム社, 2012.
- 2
昌達 慶仁. 詳解 圧縮処理プログラミング. ソフトバンク クリエイティブ, 2010. ISBN 978-407973-5949-7.
- 3
Xiaolin Wu. An efficient antialiasing technique. ACM SIGGRAPH Computer Graphics, 25(4):143–152, 1991. doi:10.1145/127719.122734.
- 4
Hanne H. Thoen, Martin J. How, Tsyr-Huei Chiou, and Justin Marshall. A different form of color vision in mantis shrimp. Science, 343(6169):411–413, January 2014. doi:10.1126/science.1245824.
- 5
B.K. Gunturk, J. Glotzbach, Y. Altunbasak, R.W. Schafer, and R.M. Mersereau. Demosaicking: color filter array interpolation. IEEE Signal Processing Magazine, 22(1):44–54, January 2005. doi:10.1109/msp.2005.1407714.
- 6
Lanlan Chang. Hybrid color filter array demosaicking for effective artifact suppression. Journal of Electronic Imaging, 15(1):013003, January 2006. doi:10.1117/1.2183325.
- 7
Paul E. Debevec and Jitendra Malik. Recovering high dynamic range radiance maps from photographs. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques - SIGGRAPH ’97, SIGGRAPH ’97, 369–378. ACM Press, 1997. doi:10.1145/258734.258884.
- 8
Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. Photographic tone reproduction for digital images. ACM Transactions on Graphics, 21(3):267–276, July 2002. doi:10.1145/566654.566575.
- 9
Raanan Fattal, Dani Lischinski, and Michael Werman. Gradient domain high dynamic range compression. ACM Transactions on Graphics, 21(3):249–256, July 2002. doi:10.1145/566654.566573.
- 10
C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), ICCV-98, 839–846. Narosa Publishing House, 1998. doi:10.1109/iccv.1998.710815.
- 11
Jiawen Chen, Sylvain Paris, and Frédo Durand. Real-time edge-aware image processing with the bilateral grid. In ACM SIGGRAPH 2007 papers, SIGGRAPH07, 103. ACM, July 2007. doi:10.1145/1275808.1276506.
- 12
Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, April 2004. doi:10.1109/tip.2003.819861.
- 13
Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, June 2018. doi:10.1109/cvpr.2018.00068.
- 14
Lei Xu, Erkki Oja, and Pekka Kultanen. A new curve detection method: randomized hough transform (rht). Pattern Recognition Letters, 11(5):331–338, May 1990. doi:10.1016/0167-8655(90)90042-z.
- 15
Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: active contour models. International Journal of Computer Vision, 1(4):321–331, January 1988. doi:10.1007/bf00133570.
- 16
Stanley Osher and James A Sethian. Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. Journal of Computational Physics, 79(1):12–49, November 1988. doi:10.1016/0021-9991(88)90002-2.
- 17
Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours. International Journal of Computer Vision, 22(1):61–79, 1997. doi:10.1023/a:1007979827043.
- 18
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In EEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1, 886–893. IEEE, 2005. doi:10.1109/cvpr.2005.177.
- 19
Hans Moravec. Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover. PhD thesis, Stanford University, 1981.
- 20
C. Harris and M. Stephens. A combined corner and edge detector. In Procedings of the Alvey Vision Conference 1988, AVC 1988, 23.1–23.6. Alvey Vision Club, 1988. doi:10.5244/c.2.23.
- 21
David G Lowe. Object recognition from local scale-invariant features. In Proceedings of the seventh IEEE international conference on computer vision, volume 2, 1150–1157. Ieee, 1999. doi:10.1109/iccv.1999.790410.
- 22
David G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91–110, November 2004. doi:10.1023/b:visi.0000029664.99615.94.
- 23
Tony Lindeberg. Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2):79–116, 1998. doi:10.1023/a:1008045108935.
- 24
Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded Up Robust Features, pages 404–417. Springer Berlin Heidelberg, 2006. doi:10.1007/11744023_32.
- 25
Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: an efficient alternative to sift or surf. In 2011 International Conference on Computer Vision, 2564–2571. IEEE, November 2011. doi:10.1109/iccv.2011.6126544.
- 26
Florent Perronnin and Christopher Dance. Fisher kernels on visual vocabularies for image categorization. In 2007 IEEE Conference on Computer Vision and Pattern Recognition, 1–8. IEEE, June 2007. doi:10.1109/cvpr.2007.383266.
- 27
Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI'81, 674–679. San Francisco, CA, USA, 1981. Morgan Kaufmann Publishers Inc.
- 28
Jean-Yves Bouguet and others. Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm. Technical Report 1-10, Intel corporation, 2001.
- 29
Berthold K.P. Horn and Brian G. Schunck. Determining optical flow. Artificial Intelligence, 17(1–3):185–203, August 1981. doi:10.1016/0004-3702(81)90024-2.
- 30
Carlo Tomashi and Takeo Kanade. Detection and tracking of point features. Technical Report, Carnegie Mellon University, 1991.
- 31
Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000. doi:10.1109/34.888718.
- 32
Kunihiko Fukushima. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202, apr 1980. doi:10.1007/bf00344251.
- 33
David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating errors. Nature, 323(6088):533–536, October 1986. doi:10.1038/323533a0.
- 34
J J Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558, April 1982. doi:10.1073/pnas.79.8.2554.
- 35
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, 1097–1105. 2012. doi:10.1145/3065386.
- 36
Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771–1800, August 2002. doi:10.1162/089976602760128018.
- 37
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1–9. IEEE, June 2015. doi:10.1109/cvpr.2015.7298594.
- 38
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June 2016. doi:10.1109/cvpr.2016.90.
- 39
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, and others. An image is worth 16x16 words: transformers for image recognition at scale. In International Conference on Learning Representations. 2020.
- 40
Diederik P Kingma and Max Welling. Auto-encoding variational bayes. 2013. URL: https://arxiv.org/abs/1312.6114, arXiv:1312.6114.
- 41
Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In International Conference on Learning Representations. 2015.
- 42
Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In International conference on machine learning, 214–223. PMLR, 2017.
- 43
Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved training of wasserstein gans. In Advances in neural information processing systems, volume 30. 2017.
- 44
Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.
- 45
Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in neural information processing systems, volume 33, 6840–6851. 2020.
- 46
Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine learning, 8821–8831. Pmlr, 2021.
- 47
Aaron Van Den Oord, Oriol Vinyals, and others. Neural discrete representation learning. In Advances in neural information processing systems, volume 30. 2017.
- 48
Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.
- 49
Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and Mark Chen. Glide: towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.
- 50
Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, and others. Photorealistic text-to-image diffusion models with deep language understanding. In Advances in neural information processing systems, volume 35, 36479–36494. 2022.
- 51
Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution image synthesis with latent diffusion models. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10674–10685. IEEE, June 2022. doi:10.1109/cvpr52688.2022.01042.
- 52
Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J. Davison. KAZE Features, pages 214–227. Springer Berlin Heidelberg, 2012. doi:10.1007/978-3-642-33783-3_16.
- 53
Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. Brisk: binary robust invariant scalable keypoints. In 2011 International Conference on Computer Vision, 2548–2555. IEEE, November 2011. doi:10.1109/iccv.2011.6126542.